3.6.1 REGISTER TO REGISTER

Mnemonic	Operand	Cycles	Instruction						Description	Status Change
MOVR	SSS, DDD	6/7*	X	XXX	XXO	010	SSS	DDD	MOVe contents of Register SSS to Register DDD.	S, Z
TSTR	SSS	6/7**			0	010	SSS	SSS	TeST contents of Register SSS.	s, Z
JR	SSS	7			0	010	SSS	111	Jump to address in Register SSS (move address to Register 7).	S, Z
ADDR	SSS, DDD	6/7*			0	011	sss	DDD	ADD contents of Register SSS to contents of register DDD. Results to DDD.	s, z, c, ov
SUBR	SSS, DDD	6/7*			0	100	SSS	DDD	SUBtract contents of Register SSS from contents of register DDD. Results to DDD.	S, z, C, OV
CMPR	SSS, DDD	6/7*			0	101	SSS	DDD	CoMPare Register SSS with register DDD by subtraction. Results not stored.	S, z, C, OV
ANDR	SSS, DDD	6/7*			0	110	sss	DDD	logical AND contents of Register SSS with contents of register DDD. Results to DDD.	S, Z
XORR	SSS, DDD	6/7*			0	111	SSS	DDD	eXclusive OR contents of Register SSS with contents of register DDD. Results to DDD.	S, z
CLRR	DDD	6/7*			0	111	DDD	DDD	CLeaR Register to zero.	S, z

3.6.2 SINGLE REGISTER

Mnemonic	Operand	Cycles	Instruction						Description	Status Change
INCR	DDD	6/7*	X	XXX	XXO	000	001	DDD	INCrement contents of Register DDD. Results to DDD.	S, Z
DECR	DDD	6/7**			0	000	010	DDD	DECrement contents of Register DDD. Results to DDD.	s, Z
COMR	DDD	7			0	000	011	DDD	one's COMplement contents of Register DDD. Results to DDD.	s, z
NEGR	DDD	6/7*			0	000	100	DDD	two's complement contents of Register DDD. Results to DDD.	s, z, C, ov
ADCR	DDD	6/7*			0	000	101	DDD	ADd Carry bit to contents of Register DDD. Results to DDD.	s, z, c, ov
GSWD	DDD	6			0	000	110	ODD	Get Status WorD in register DD. Bits 0-3, 8-11 set to 0 . Bits $4,12=C ; 5,13=O V ; 6,14=Z ; 7,15=S$.	
NOP		6			0	000	110	10X	No Operation.	
SIN		6			0	000	110	11X	Software Interrupt; pulse to PCIT pin.	
RSWD	sss	6			0	000	111	SSS	Restore Status WorD from register SSS; Bit 4 to C, Bit 5 to OV, Bit 6 to Z, Bit 7 to S.	s, z, c, OV

3.6.3 REGISTER SHIFT Executable only with Registers 0, 1, 2, 3.

Shifts are not interruptible.

NOTE: $\mathrm{n}=1$ or 2 places

3.6.4 CONTROL

Mnemonic	Operand	Cycles	Instruction					Description	Status Change
HLT		4	X	XXX	XXO	000	000	000	HaLT after next interruptible instruction is executed. Resume on start
SDBD		4			0	000	000	001	Set Double Byte Data for the next instruction which must be an
									external reference instruction.
EIS					0	000	000	010	Enable Interrupt System. Not Interruptable.
DIS					0	000	000	011	Disable Interrupt System. Not Interruptable.
TCI					0	000	000	101	Terminate Current Interrupt. Not Interruptable.
CLRC					0	000	000	110	CLeaR Carry to zero. Not Interruptable.
SETC							000	000	111
SET Carry to one. Not interruptable.									

3.6.5 JUMP

NOTE: Bits 2-7 of the second word form bits 10-16 of the Destination Address.
Bits $0-9$ of the third word form bits $0-9$ of the Destination Address.
3.6.6 BRANCHES The Branch instructions are Program Counter Relative, i.e. the Effectrive Address = PC +/- Displacement. $\mathrm{P}-\mathrm{P}$ is the Displacement and S is 0 for + and 1 for - .
For a forward branch an addition is performed.
For a backward branch a one's complement subtraction is performed.
Computation performend on PC +2 .

NOTE: 7/9 7 Cycles if test condition is not true, 9 cycles if true.

3.6.7 DIRECT ADDRESSED DATA - MEMORY

Mnemonic	Operand	Cycles	Instruction						Description	Status Change
MVO	SSS, DA	11	X	XXX	XX1	001	000	SSS	MoVe Out data from register SSS to address A - A. Not	
			A	AAA	AAA	AAA	AAA	AAA	interruptible.	
MVI	SA, DDD	10			1	010	000	DDD	MoVe In data from address A - A to register DDD.	
			A	AAA	AAA	AAA	AAA	AAA		
ADD	SA, DDD	10			1	011	000	DDD	ADD data from address A - A to register DDD. Results DDD.	s, z, C, OV
			A	AAA	AAA	AAA	AAA	AAA		
SUB	SA, DDD	10			1	100	000	DDD	SUBtract data from address A - A from register DDD.	s, z, C, OV
			A	AAA	AAA	AAA	AAA	AAA	Results to DDD.	
CMP	SA, DDD	10			1	101	000	DDD	CoMPare data from address A-A with register SSS by subtraction.	s, z, C, OV
			A	AAA	AAA	AAA	AAA	AAA	Results not stored.	
AND	SA, DDD	10			1	110	000	DDD	logical AND data from address A - A with register DDD.	s, z
			A	AAA	AAA	AAA	AAA	AAA	Results to DDD.	
XOR	SA, DDD	10			1	111	000	DDD	eXclusive OR data from address A - A with register DDD.	S, z
			A	AAA	AAA	AAA	AAA	AAA	Results to DDD.	

3.6.8 IMMEDIATE DATA — REGISTER

Mnemonic	Operand	Cycles	Instruction						Description	Status Change
MVOI	SSS, DA	9	X	XXX	XX1	001	000	SSS	MoVe Out Immediate data from register SSS to PC + 1 (field).	
			I	III	III	III	III	III	Not interruptible.	
MVII	SA, DDD	8			1	010	000	DDD	MoVe In Immediate data to register DDD from PC + 1 (field).	
			I	III	III	III	III	III		
ADDI	SA, DDD	8			1	011	000	DDD	Add Immediate data to contents of register DDD.	s, z, C, OV
			I	III	III	III	III	III	Results to DDD.	
SUBI	SA, DDD	8			1	100	000	DDD	SUBtract Immediate data from contents of register DDD.	s, z, c, ov
			I	III	III	III	III	III	Results to DDD.	
CMPI	SA, DDD	8			1	101	000	DDD	CoMPare Immediate data from contents of register SSS by	s, z, C, ov
			I	III	III	III	III	III	subtraction. Results not stored.	
ANDI	SA, DDD	8			1	110	000	DDD	logical AND Immediate data with contest of register DDD.	s, Z
			I	III	III	III	III	III	Results to DDD.	
XORI	SA, DDD	8			1	111	000	DDD	eXclusive OR Immediate data with the contents of register DDD.	s, z
			I	III	III	III	III	III	Results to DDD.	

3.6.9 INDIRECT ADDRESSED DATA—REGISTEIMMM Source data is located at the address contained in Register R1-R6.

MMM=4, 5: post-increment R4 or R5.
MMM=6: MVO instruction - post-increment R6. PUSH data from
Register SSS to the Stack.
Other instructions - pre-decrement R. PULL data from the
Stack to be used at the first operand.

NOTE: 8/11-11 Cycles if MMM = 6, 8 Cycles otherwise

3.6.10 IMMEDIATE DOUBLE BYTE DATA — REGISTER

Mnemonic	Operand	Cycles	Instruction						Description	Status Change
SDBD			X	XXX	XX0	000	000	001	MoVe In Immediate double byte data to register DDD.	
MVII	I-I, DDD	14	X	XXX	XX1	010	111	DDD		
			x	Xxx	xxx	XLL	LLL	LLL		
			X	XXX	xxx	XUU	UUU	UUU		
SDBD					0	000	000	001	ADD Immediate double byte data to contents of register DDD.	s, z, C, OV
ADDI	I-I, DDD	14			1	011	111	DDD	Results to DDD.	
						LL	LLL	LLL		
						UU	UUU	UUU		
SDBD					0	000	000	001	SUBtract Immediate double byte data from contents of register	S, Z, C, OV
SUBI	I-I, DDD	14			1	100	111	DDD	DDD. Results to DDD.	
						LL	LLL	LLL		
						UU	UUU	UUU		
SDBD					0	000	000	001	CoMPare Immediate double byte data with contents of register	s, z, C, OV
CMPI	I-I, DDD	14			1	101	111	DDD	SSS by subtraction. Results not stored.	
						LL	LLL	LLL		
						UU	UUU	UUU		
SDBD					0	000	000	001	logical AND Immediate double byte data with contents of register	S, Z
ANDI	I-I, DDD	14			1	100	111	DDD	DDD. Results to register DDD.	
						LL	LLL	LLL		
						UU	UUU	UUU		
SDBD					0	000	000	001	eXclusive OR Immediate double byte data with contents of	S, Z
XORI	I-I, DDD	14			1	101	111	DDD	register DDD. Results to register DDD.	
						LL	LLL	LLL		
						UU	UUU	UUU		

[^0]
3.6.11 INDIRECT ADDRESSED DOUBLE BYTE DATA - REGISTER

3.6.12 SYMBOLIC NOTATION — The following symbolic notation is used in all CP1600 instruction documentation.

Address		Functions +	- addition	MMM	- Register Address Mode
Modes:	R	- register	- subtraction	000	- direct address in location following instruction
	blank'	- direct address	- inclusive OR	001	- indirect address for Register 1
	।	- immediate data	- exclusive OR	010	- indirect address for Register 2
	@	indirect address \&	- AND	011	- indirect address for Register 3
		()	- contents of		- indirect address for Register 4, post increment
Operands:	SSS	- Source Register <-	- is replaced by	101	- indirect address for Register 5, post increment
	DDD	- Destination Register <>	- optional operand	110	- indirect address for Register 6, post increment
	MMM	- Register Address Mode Status: S	- Sign bit		for MVO only; indirect address for Register 6,
	RR	- Register (0-3) Z	- Zero bit		pre decrement for all instructions except MVC
	N	- Number of Shifts ($0=1,1=2$) C	- Carry bit	111	- indirect address for Register 7, post increment.
	S	- Sign of Address Displacement OV	- Overflow bit		(Immediate data in location following instruction.)
	EEEE	- External Condition Code (0-15)			
	DA	- Destination Address			
	SA	- Source Address			
	P-1 $\mathrm{P}-\mathrm{P}$	- Immediate data word - Address displacement for Branch			

[^0]: NOTE: I - I — UUUUUUUULLLLLLLL; L - L indicates low byte of literal; U - U indicates upper byte.
 NOTE: The SDBD instruction is normally supplied by the assembler as required to properly generate machine code.

