
Chapter 2
THE GENERAL INSTRUMENT CP1600

The CP1600 and the TMS 9900 were the first two NMOS16-bit microprocessors commercially available.
Even a superficial inspection of the CP1600 shows It to be more powerful than the National Semiconductor
PACE (Or 8900), yet the CP1600 is not widely used. This is because General Instrument does not support
the CP1600 to the extent that National Semiconductor originally supported PACE, or most manufacturers sup-
port their 8-bit microprocessors.

General Instrument's marketing philosophy has been to seek out very high volume customers: General
Instrument supports low-volume customers only to the extent that this support would not require substantial
investment on the part of General Instrument.

From the viewpoint of the low-volume microprocessor user. General Instrument's marketing philosophy is unfor-
tunate. The CP1600 is an ideal microprocessor for the more sophisticated video games that are appearing, and
its rich Instruction set and capable architecture make it an ideal choice for data processing terminals and home
computer systems However, due to it’s limited support, potential low-volume CP1600 customers are Iikely to
choose another equally capable product.

Three CP1600 parts are available, differentiated only by the clock speeds for which they have been
designed.
The CP1600 requires a 3.3 MHz. two-phase clock and generates a 600 nanosecond machine cycle time.
The CP1600 requires a 4 MHz. two-phase clock and generates a 500 nanosecond machine cycle time.
The CP1610 requires a 2 MHz. two-phase clock and generates a 1 microsecond cycle time.

In addition to the CP1600 microprocessors themselves, the CP1680 Input/0utput Buffer (IOB) is
described in this chapter. Additional support devices for the CP1600 may be found in An Introduction
to Microcomputers: Volume 3 – Some Real Support Devices.

The sole source for the CP1600 is:
GENERAL INSTRUMENT
Microelectronics Division
600 West John Street
Hicksville, New York 11802

There is no second source for the CP1600. General Instrument has a policy of discouraging second sources
for its product line.

The CP1600 is fabricated using NMOS ion implant LSI technology; the device is packaged as a 40-pin DIP.
Three power supplies are required: +12V, +5V, and -3V.

THE CP1600 MICROCOMPUTER SYSTEM OVERVIEW
Logic of our general microcomputer system which has been implemented by the CP1600 CPU is illus-
trated in Figure 2-1.

Observe that the CP1600 requires external logic to create its various timing and clock signals. Some
bus interface logic is shown as absent because a number of devices must surround the CP1600: these
include:
1) An address buffer, since data and addresses are multiplexed on a single 16-bit bus.
2) Buffer amplifiers to provide the power required by the type of memory and l/O devices that will normally be
connected to a CP1600 CPU.
3) A one-of-eight decoder chip to create eight individual control signals out of three controls output by the
CP1600.
4) A one-of-sixteen multiplex chip to funnel sixteen external status signals into the CP1600 if using external
branches.

Were you to compare Figure 2-1 with an equivalent figure for a low-end microprocessor such as the SC/MP
(which is described In Chapter 3 of the Osborne 4 & 8-Bit Microprocessor Handbook (Osborne/McGraw-Hill,
1980), the CP1600 might appear to offer fewer logic functions: but within the functions it does provide the
CP1600 provides considerably more logic and program execution capabilities. Where low-end microprocessors
choose to condense onto a single chip, simple implementations of different logic functions, high-end products
such as the CP1600 choose to provide more devices greater capabilities on each device.

Logic to Handle
Intrrupt Rquests from

External Devices

Accumulator
Register(s)

Arithmetic and Logic
Unit

Data Counter(s)Instruction Register
Control Unit

Bus Interface Logic

ROM addressing and
Interface Logic

Interrupt Priority
Arbitration

I/O Communication
Serial to Parallel
Interface Logic

Stack Pointer

Program Counter

I/O Ports
Interface Logic

Direct Memory
Access Control Logic

RAM addressing
and

Interface Logic

Read Only Memory
Programmable

Timers I/O Ports Read/Write
Memory

Clock Logic

System Bus

CP1600 CPU

CP1680 I/O Buffer

Figure 2-1. Logic of the CP1600 CPU and CP1680 I/O Buffer

CP1600 PROGRAMMABLE REGISTERS
The CP1600 has eight 16-bit pr ogrammab le register s, whic h may be illustrated as f ollo ws:

The way in which the registers illustrated above are used is unusual when compared to other microcomputers
described in this book. All eight 16-bit registers can be addressed as though they were general purpose regis-
ters: however, only Register R0 has no other assigned function. We may therefore look upon Register R0 as the
Primary Accumulator for this CPU.

Registers R1, R2, and R3 serve as general purpose registers, But may also be used as Data Counters.

In addition to serving as general purpose registers, R4 and R5 may be used as auto-incrementing Data
Counters. Memory reference instructions that identify Register R4 or R5 as holding the implied memory address
will cause the contents of Register R4 or R5 to be incremented — after the memory reference instructions have
completed execution.
Registers R6 and R7, in addition to being accessible as general purpose registers, also serve as a Stack Pointer
and a Program Counter, respectively.

Having the Stack Pointer accessible as a general purpose register makes it quite simple to maintain more that
one Stack in external memory; also, you can easily address the Stack as data memory using the Stack Pointer
as a Data Counter.

Having the Program Counter accessible as a general purpose register can be useful when executing various
types of conditional branch logic.

While having the Stack Pointer and the Program Counter accessible as though they were general purpose reg-
isters may appear strange, this is a feature of the PDP-11 minicomputer — and is a very powerful programming
tool.

CP1600 MEMORY ADDRESSING MODE

The CP1600 addresses memor y and I/O de vices within a single ad dress space .

When ref erencing e xternal memor y, you can use direct ad dressing, implied ad dressing, or implied
addressing with auto-increment.

Direct ad dressing instructions are all tw o or more w ords long, where the
second or last w ord of the instruction object code pr ovides a I6-bit direct
address.

CP1600 direct addressing instructions are complicated by the fact that CP1600 program memony is frequently
only 10 bits wide. That is to say, even though the CP1600 is a 16-bit microprocessor, its instruction object codes
are only 10 bits wide. If program memory is only 10 bits wide, then direct addresses will only be 10 bits wide. A
10-bit direct address will access the first 1024 words of memory only.

CP1600 DIRECT
ADDRESSING

R0
R1
R2
R3
R4
R5
R6
R7

Data Counters

Data Counters with
auto-increment

Stack Pointer

Program Counter

General Purpose registers

Were you to implement a 16-bit wide program memory, then you could directly address up to 65.536 words of
memory, however, six bits of the first object program word for every instruction in program memory would be
wasted. This may be illustrated as follows:

Instructions that ref erence memor y using implied ad dressing identify
general purpose Register R1, R2, or R3 as containing the implied
address.

A memory reference instruction which identifies Register R4 or R5 as provid-
ing the external memory address will always cause Register R4 or R5 contents to be incremented following the
memory access; thus you have implied memory addressing with auto-increment.

Memor y ref erence instruction, that specify implied memor y addressing via Register 1, 2, 3, 4, or 5 can
access 8-bit memor y. An SDBD instruction executed directly before a valid memory reference instruction
forces the reference instruction to access memory one byte at a time if implied memory addressing via Register
1, 2, or 3 is specified, then the same byte of memory will be accessed twice For an instruction that loads the
contents of data memory into Register R0, this may be illustrated as follows:

CP1600
IMPLIED
ADDRESSING

If Registers R4 or R5 provides the implied memory address for the instruction which follows an SDBD instruc-
tion, then the implied memory address is incremented twice, and two sequential low-order bytes of data are
accessed. For an Instruction which loads data into Register R0, this may be illustrated as follows:

The SDBD instruction may also precede an immediate Instruction. Now the immediate data will be fetched from
the low-order byte of the next two sequential program memory locations This may be illustrated as foilows

Without the preceding SDBD instruction, an immediate instruction will access the next single program memory
word to find the required immediate data. Ten or more bits of immediate data will be accessed depending on
the width of program memory words.

The CP1600 has no Stac k ref erence instructions suc h as a Push or Pull;
rather , a variety of memor y ref erence instructions can identify Register R6
as pr oviding the implied ad dress. When Register R6 provides the implied
address, it is treated as an upward migrating Stack Pointer. When a memory write
operation specifies Register R6 as providing the implied memory address,
Register R6 contents will be incremented following the memory write. A memory
read instruction that specifies Register R6 as providing the implied memory address will cause the contents of
Register R6 to be decremented before the read operation occurs.

An un usual f eature of the CP1600 is the fact that a v ariety of secondar y memor y ref erence instructions
can also be ref erence memor y via the Stac k Pointer . When these instructions are executed. Register R6
contents are decre mented before the memory access occurs — as though a Pull operation from the Stack were
being executed.

Logically, Register R6, the Stack Pointer, is being handled as though it were a Data Counter with post-incre-
ment and pre-decrement.

CP1600 STACK
ADDRESSING

Jump instructions use direct memory addressing. Jump instructions are all three words long. The direct address
is computed from the second and third memory words as follows:

AAAAAABBBBBBBBBB Jump address (binary)
YY are enable/disable bits for interrupts
XX identity the register where the return address will be stored for JSR
XX and YY are described in detail in Table 2-4.

You can enable or disable interrupts whenever you execute a Jump or Jump-to-Subroutine instruction.

The only difference between a Jump instruction and a Jump-to-Subroutine instruction is that the Jump-to-
Subroutin instruction saves the Program Counter contents in Register 4, 5, or 6. The two high-order bits (XX) or
the second Jump-to-Subroutine obect code word specifies which of the three registers will be used to hold the
return address.

Jump-to-Subroutine instructions, like the Jump instruction, allow direct memory addressing only.

CP1600 STATUS AND CONTROL FLAGS

The CP1600 CPU has f our of the standar d status fla gs; in ad dition, it has some un usual contr ol signals.

These are the f our standar d status fla gs:

Sign (S). This status is set equal to the high-order bit of any arithmetic operation result.

Zero (Z). This status is set to 1 when any instruction’s execution creates a zero result. The status is set to 0 for
a nonzero result.

The Carry (C) and Overflow (O) statuses are standard carry and overflow, as described in Volume 1.

Four contr ol signals (EBCA0 - EVCA3) are output during a Branc h-on-External (BEXT) instruction. These
four signals are output to reflect the low-order four bits of the BEXT instruction’s object code. External logic
receives these four signals and (depending on their state), may or may not return a high input via EBCI. If EBCI
is returned high, then the BEXT instruction will perform a branch; if EBCI is returned low, then the BEXT instruc-
tion will cause the next sequential instruction to be executed. The four control signals EBCA0 - EBCA3 there-
fore provide the CP1600 with a means of testing 16 external conditions.

CP1600 CPU PINS AND SIGNALS

CP1600 CPU pins and signals are illustrated in Figure 2-2.

D0 - D15 is a m ultiple xed Ad dress and Data Bus. Given a total of 40 pins in a package, CP1600 designers
have been forced to share 16 pins between addresses and data. Three contr ol signals BDIR, BC1, and BC2,
identify the traffic on the Ad dress/Data Bus. External logic (one MSI c hip) m ust decode these three sig -
nals to create eight contr ol signals, as summariz ed in Table 2-1.

Remaining signals ma y be divided into f our gr oups: timing, status/contr ol, interrupt, and DMA.

Two timing c loc k signals are required: F1 and F2. These are complementary clock signals which may be
illustrated as follows:

9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 0 0

X X A A A A A A Y Y

B B B B B B B B B B

JR or JSR

Word 2

Word 3

F1

F2

Figure 2-2 CP1600 CPU Signals and Pin Assignments

MSYNC is a some what un usual signal, as compared to other micr ocomputer c loc k signals in this book .
Following powerup. MSYNC must be held low for at least 10 milliseconds. On the subsequent rising edge
of MSYNC, logic internal to the CP1600 CPU will synchronize the F1 and F2 clock signals to start a new
machine cycle. Most of the CPU devices we have described in this book use a reset signal or have internal
powerup logic which performs this clock synchronization.

Now consider the status and contr ol signals.

First of all, there are the f our contr ol outputs which we have already described: EBCA0 - EBCA3. There is
one conditional Branc h instruction (BEXT) whic h will onl y branc h if a high signal is input via EBCI.
When the BEXT instruction is executed, the low-order four BEXT instruction object code bits are output via
EBCA0 - EBCA3. External logic is supposed to decode these four signals by whatever means are appropriate
— and thence determine whether EBCI shouId be input high or low. A high input, as we have just stated, will
result in a branch; a low input wiII cause the next sequential instruction to be executed.

In reality, there is no connection within CP1600 CPU logic between the EBCI input and the four EBCA0-EBCA3
outputs. So far as external logic is concerned, the execution of a BEXT instruction is identified by signal levels
output and maintained on the EBCA0 - EBCA3 outputs. While the EBCI input determines whether a branch will
or will not occur. How external logic chooses to determine whether EBCI will be set high or low is entirely up to
external logic. The only vital function served by EBCA0 - EBCA3 is to identify the instant at which a BEXT
instruction is executed.

Another un usual contr ol signal pr ovided b y the CP1600 is PCIT: this is a bidirectional signal. When input
low, this signal prevents the Program Counter from being incremented following an instruction fetch. This signal
is also output as a low pulse following execution of a software interrupt instruction. Instruction timing separates
the active input and

active output of this signal; providing external logic adheres to timing requirements, a conflict between input and
output logic will never arise.

BDRDY is equiv alent to the WAIT signal we ha ve described f or a n umber of other micr ocomputer s.
BDRDY is input low by any external logic which requires more time in order to respond to an I/O access. Recall
that the CP1600 uses a single address space to reference memory or I/O devices. The BDRDY signal causes
the CPU to enter a Wait state for as long as BDRDY is being input low; however, during the Wait state, CPU
logic is not refreshed. Thus a Wait state cannot last for more than 40 microseconds, or the contents of internal
CPU locations will be lost.

STPST a Halt/Reset input, is an edge-triggered signal. When external logic inputs a high-to-low transition via
STPST the CPU will complete execution of any interrupt instruction, then will enter a Halt state and output HALT
high. If a non-interruptable instruction is being executed, then the Halt state will not begin until completion of
next interruptabel instruction's execution. The Halt state will last until external logic inputs another high-to-low
STPST transition, at which time the Halt output will be returned low and normal programming execution will con-
tinue. Execution of the HLT instruction also causes the CP1600 to enter a Halt state as described above.

Let us no w look at interrupt signals.

The CP1600 has tw o interrupt request inputs — INTR and INTRM. INTR has higher priority than INTRM
INTR cannot be disabled. Typically, INTR will be used to trigger an interrupt upon power failure or other cata-
strophes.

The interrupt ac kno wledg e signal is created b y external logic whic h must decode the BC1, BC2, and
BDIR signals, as shown in Table 2-1. Observe that there are, in fact, two interrupt acknowledge signals: the first
(INTAK) acknowledges the interrupt itself, while the second (DAB) is used as a strobe for external logic to return
an interrupt address vector. The interrupt sequence is described later in this chapter.

The CP1600 has two additional interrupt related signals which are unusual compared to other microcomputers
described in this book.

TCI is output high when an End-of-Interrupt Instruction is executed. This signal makes it easy for external logic
to generate interrupt priorities which extend across the execution of an interrupt service routine.

Table 2-1, CP1600 Bus Control Signals

BC1 BC2 BDIR SIGNAL FUNCTION

0 0 0 NACT The CPU is inactive and the Data/Address Bus is in a
high impedance state.

0 0 1 BAR A memory address must be input to the CPU via the
Data/Address Bus.

0 1 0 IAB Acknowledged external interrupt requesting logic must
place the starting address for the interrupt service rou-
tine on the Address Bus.

0 1 1 DWS Data write strobe for external memory.
1 0 0 ADAR This signal identifies a time interval during which the

Data/Address Bus is floated, while data input on the
Data Bus is being interpreted as the effective memory
address during a direct memory addressing operation.

1 0 1 DW The CPU is writing data into external memory. DW will
precede DWS by one machine cycle.

1 0 0 DTB This is a read strobe which external memory or I/O logic
can use in order to place data on the Data/Address Bus.

1 1 1 INTAK This is an interrupt acknowledge signal. It is followed by
IAD which is a strobe telling the external logic which is
being acknowledged to identify itself by placing an
address vector on the Data/Address Bus.

Figure 2-3. CP1600 Machine Cycles and Buss Timing

Figure 2-4. CP1600 Instruction Fetch Timing

Figure 2-5. CP1600 Timing for Memory Read Instruction with Implied Memory Addressing

CP1600 INSTRUCTION TIMING AND EXECUTION

CP1600 instructions are e xecuted as a sequence of mac hine c ycles. Each mac hine c ycle has f our
cloc k periods, as illustrated in Figure 2-3. Machine cycles are identified by their cycle number and by the
levels of the BC1, BC2, and BDIR signals. Each of the eight level combinations is given a name, taken from
Table 2-1. This name becomes the name of the machine cycle. Thus in Figure 2-4. and in subsequent instruc-
tion timing iilustrations, each mac hine c ycle is identified b y a signal name fr om Table 2-1.

Figure 2-3 shows general case timing for data output or input on the Data/Address Bus. In between data input
or output operations the bus is floated.

CP1600 MEMORY ACCESS TIMING

Figure 2-4 illustrates instruction f etch timing f or a CP1600 instruction’ s execution. Three machine
cycles are required. During the first machine cycle an address is output. Nothing happens during the second
machine cycle; it is a "time spacing" machine cycle that routinely separates two CP1600 Bus access machine
cycles. The object code for the accessed instruction is returned during the third machine cycle.

Figure 2-5 illustrates timing f or the simplest memor y read instruction’ s execution. In this case the data
memory address is taken from one of the CPU registers. There is no difference between timing for the three
machine cycles of an instruction fetch or a data memory read. As illustrated in Figure 2-5, a simple memory
read instruction's execution consists of two three-machine cycle memory read operations, separated by a
spacing no operation machine cycle.

Direct addressing Direct addressing
Memory Read Memory Write
Machine Cycles Machine Cycles

BAR Fetch first instruction BAR
NACT object code word NACT
DTB DTB

NACT Spacing machine cycle NACT

BAR BAR
NACT NACT
ADAR Fetch second instruction ADAR
NACT object code word NACT
DTB DTB

NACT Spacing machine cycle NACT

BAR Memory read Memory write BAR
NACT machine cycle machine cycle NACT
DTB DW

DWS

Figure 2-6 CP1600 Timing for Memory Write Instruction with Implied Memory Addressing

Figure 2-6 illustrates timing f or a simple CP1600 memor y write instruction e xecution. Data is output for
two machine cycles, giving external logic ample time to respond to the data output cycle as a write strobe.

Any memory reference instruction that specifes direct memory addressing will require one three-clock-period
machine cycle to fetch each word of the instruction object code; an NACT clock period will separate each
machine cycle. After the first instruction fetch machine cycle an ADAR-NACT clock period combination will be
inserted in the second (and third, if present) instruction fetch machine cycle. During an ADAR clock period.
BC1 is high, while BC2 and BDIR are low. No other control signals are active. Thus, for a tw o-word memor y
read or memor y write instruction that specifies direct ad dressing, the f ollo wing c loc k periods and
machine c ycles will be required f or instruction e xecution:

Figure 2-7 CP1600 Wait State Timing

THE CP1600 WAIT STATE

The CP1600 has a Wait state equivalent to those described for other microcomputers in this book. ExternaI
logic that requires more time to respond to an access must input BDRDY low before the end of the BAR
machine cycle, during which an address is output and the device is selected. Timing is illustrated in Figure 2-7.

If you examine Figures 2-4, 2-5, and 2-6, you will see that an address is output during a BAR machine cycle
to initiate any external device access. The BAR machine cycle is always followed by an NACT machine cycle;
in the middle of T1 during this NACT machine cycle, the CP1600 samples BDRDY. If BDRDY is low then a
sequence of NACT machine cycles occurs in the middle of T4 for every NACT machine cycle, the CP1600
samples BDRDY again. Upon detecting BDRDY high, the CP1600 resumes instruction execution with a DTB
machine cycle.

A Wait state m ust last f or less than 40 micr oseconds, since the CP1600 is a d ynamic de vice .

THE CP1600 HALT STATE

The CP1600 has a Halt state whic h may follo w execution of the Halt instruction, or ma y be initiated b y
external logic.

When the Halt instruction is executed, then, following the instruction fetch machine cycle, the HALT signal is
output high and a sequence of NACT machine cycles is executed.

External logic initiates a Halt state by making the STPST input undergo a high-to-low transition. Following
execution of the next interruptable instruction, a Halt state begins. The HALT signal is output high and a
sequence of NACT machine cycles is executed.

A Halt state, whether it is initiated by execution of a Halt instruction or by a high-to-low transition of STPST.
must be terminated by a high-to-low transition of STPST. This will cause the Halt state to end at the conclu-
sion of the next NACT machine cycle. Timing for a Halt state which is initiated and terminated by STPST may
be illustrated as follows:

The PCIT signal as an input inhibits CP1600 Pr ogram Counter increment logic. Thus, external logic can
input PCIT low — in which case the same instruction will be continuously re-executed unlil PCIT goes high
again However, PCIT should only change levels while the CPU has been halted Thus, PCIT and STPST
should be used tog ether as f ollo ws:

CP1600 INITIALIZATION SEQUENCE

The CP1600 is initialited b y inputting the MSYNC signal lo w for a minim um of 10 milliseconds after
power is fir st applied to the CPU .

MSYNC must make a low-to-high transition, marking the end of the initialization, on a rising edge of the F1
clock signal. On the next rising edge of F1, instruction execution will begin. This may be illustrated as follows:

When instruction execution begins, interrupts are disabled. The following sesuence of machine cycles is
excuted:

NACT
IAB Read Data/Address Bus and load into Program Counter
NACT
NACT
NACT
BAR Output Program Counter contents to fetch first instruction
NACT
DTB

During the IAB machine cycle, external logic must supply a 16-bit address at D0 - D15. Your external logic
must provide this address, which in the simplest case may be 0000 by grounding the bus. or FFFF16 by tying
it to +5V following a startup.

The address which is input at IAB is output at BAR, initiating program execution.

CP1600 DMA LOGIC

CP1600 DMA logic is quite standar d. When external logic wishes to transf er data under DMA contr ol it
inputs B USRQ low. At the conc lusion of the ne xt interruptab le instruction’ s execution, the CPU floats
the Data/Ad dress Bus and enter s a Wait state , during whic h a sequence of NA CT machine c ycles is
executed. BUSAK is output lo w at the beginning of the fir st NACT machine c ycle.

The NACT machine c ycles that occur during a DMA operation refresh the CPU . NACT machine cycles
that occur during a Wait state do not refresh the CPU. This means that any number of NACT machine cycles
can occur during a DMA break, while a Wait state must be shorter than 40 microseconds.

The DMA break ends when external logic inputs BUSRQ high again BUSRQ is sampled during T1 of every
DMA NACT machine cycle. When BUSRQ is sampled high, two additional NACT machine cycles are execut-
ed, then BUSAK is output high and normal program execution resumes.

Figure 2-8. CP1600 DMA Timing

Figure 2-9. CP1600 Interrupt Service Routine Initialization

Figure 2-10 CP1600 Timing for TCI Instruction's Execution

THE CP1600 INTERRUPT LOGIC

The CP1600 uses a vectored interrupt pr ocessing system.

External logic requests an interrupt by inputting a low signal at either the INTR or INTRM pins

Following the execution of the next interruptable instruction, the CP1600 acknowledges the interrupt by push-
ing Register R7 contents (the Program Counter) onto the Stack; then the CP1600 outputs 111, followed by
010 at BC1, BC2, and BDIR. External logic must respond by placing 16 bits of data on the Data/Address Bus
These 16 bits of data will be loaded into Register R7, the Program Counter, thus causing program execution
to branch to an interrupt service routine dedicated to the interrupt. Timing is illustrated in Figure 2-9.

The PCIT signal is output low following execution of a software interrupt instruction (SIN). This is the only
microcomputer described in this book which allows external logic to respond to a software interrupt in this
fashion. Allowing external logic to respond to a software interrupt only makes sense when you anticipate your
product being used in a minicomputer-like environment. Typically, the software interrupt will interface to logic
of a front panel or console. When an SIN instruction is executed, a one-machine cycle low PCIT pulse is out-
put.

You may, if you wish end an interrupt service routine by executing a Terminate current Interrupt (TCI) instruc-
tion, in which case the TCI signal will be output high.

Timing f or TCI is given in Figure 2-10.

Following an interrupt acknowledge, the interrupt service routine must execute instructions in order to disable
interrupts and save the contents of registers on the Stack. The exception is Register R7, the prograim
Counter, which is auto- matically pushed onto the Stack following an interrupt acknowledge.

External logic is entirely responsible for any type of interrupt priority arbitration which may occur and for the
generaion of the interrupt vector addresing which must be following an interrupt acknowledge.

It is quite easy to generate signals equivalent to other microcomputer system busses from the CP1600
System Bus. Therefore, you can use parts described in Volume 3 to handle CP1600 interrupt requirements.

THE CP1600 INSTRUCTION SET
The CP 1600 instruction set is relatively straight forward. Addressing modes, which we have already
described, are simple, and instructions are typical of those we have seen and described for other microcom-
puters Unusual features relating to addressing modes available with individual instructions are summarized in
Table 2-2, which describes the CP1600 instruction set.

If you ha ve never pr ogrammed a PDP-11 minicomputer , then y ou should pa y par ticular attention to
programing tec hniques that result fr om the Stac k Pointer and Pr ogram Counter being accessed as
general purpose register s.

A wide variety of Register Operate instructions allow you to compute data and load the result directly into
Register R7, the Program Counter. In effect, these become computed Jump instructions.

The ablilty to manipulate Register R6, the Stack Pointer, as though it were a general purpose register means
that it is easy to maintain a number of different Stacks in external read/write memory

The Jump-to-Subroutine instruction has a minicomputer flavor to it. Rather than saving the return address on
the Stack, Register R7 contents are moved to General Purpose Register R4 or R5. A number of minicomput-
ers will save a subroutine return address in a general purpose register in this fashion. The problem with this
logic is that you must execute an additional instruction within the subroutine to save the return address on the
Stack if you are going to use nesting subroutines. If you are passing subroutine parameters. however, this is
an excellent arrangment, for the Jump-to-Subroutine instruction places the address of the parameter list
directly in a Data Counter with auto-increment. We have described the concept of parameter passing in
Volume 1, Chapter 7.

Note that the CP1600 instruction set lacks a logical OR.

In Tables 2-2 and 2-4, instruction length is given in terms of "words” rather than “bytes”, as we have done in
previous chapters. Since only the lower 10 bits of the CP1600 object code are presently used, system config-
urations need not have the full 16-bit word size. Hence a "word" may be 10 to 16 bits wide, depending on the
implementation.

The following notation is used in table 2-2:

ADDR One word of direct address.
cond Condition on which a branch may be taken. Table 1-3 lists all 14 branch conditions.
DATA One word of immediate data.
DISP One word displacement. See Table 2-4 for location of sign bit.
E External branch condition.
EBCA0-3 The external branch condition address lines. EBAC0, EBAC1, EBAC2, EBAC3.
EBCI The external branch condition input line.
LABEL A 16-bit direct address, target of a Jump instruction. See Table 2-4 for the bit format.
PCIT The software interrupt output line.
RB General Purpose Register R4, R5, R6.
RD One of the general purpose registers, used as destination for operation results.
RM One of the general purpose registers used as a data counter, R4 or R5, if specified, is auto-incre-

mented after memory access. R6 is incremented after a write, and decremented before a read.
RR General Purpose Register R0, R1, R2, R3.
RS One of the general purpose registers, used as the source of an operand.

Statuses:
S the Sign status
C the Carry status
Z the Zero status
O the Overflow status

The following symbols are used in the STATUSES collumn
X the status flag is affected by the operation

a blank means the status flag is not affected
0 the operation clears the status flag
1 the operation sets the status flag
2 the overflow flag is affected only on 2-bit shifts or rotates

SW The Status Word, whose bits correspond to the condition of the status flags in the following
way:

When the status word is copied into a register, it goes to the upper half of each byte:

When the status word is loaded from a register, it comes from the upper half of the lower byte:

x<y,z> Bits y through z of the Register x For example, R7<15,8> represents the upper byte of
Program Counter

(,2) Indicates that the operand “,2” is optional

A low pulse

[] Contents of location enclosed within brackets. If a register designation is enclosed within the
brackets, then the designated registers contents are specified. If a memory address is
enclosed within the brackets, then the contents of the addressed memory location are speci-
fied.

[[]] Implied memory addressing, the contents of the memory location designated by the contents
of a register.

L Logical AND

V Logical Exclusive-OR

V Logical OR

± Addition or subtraction of a displacement. depending on the sign bit in the object code.

¬ Data is transferred in the direction of the arrow

MNEMONIC

MVI

MVI@

MVO

MVO@

ADD

ADD@

SUB

SUB@

CMP

CMP@

AND

AND@

XOR

XOR@

OPERAND(S)

ADDR, RD

RM, RD

RS, ADDR

RS, RM

ADDR, RD

RM, RD

ADDR, RD

RM, RD

ADDR, RS

RM, RS

ADDR, RD

RM, RD

ADDR, RD

RM, RD

WORDS

2

1

2

1

2

1

2

1

2

1

2

1

2

1

OPERATION PERFORMED

[RD] ¬ [ADDR]

Loads register from memory, using direct addressing.

[RD] ¬ [[RM]]

Loads register from memory, using implied addressing.

[ADDR] ¬ [RS]

Store register to memory, using diret addrerssing.

[[RM]] ¬ [RS]

Store register to memory, using implied addressing. If RS = R4, R6, or R7,

then RS = RM is not supported.

[RD] ¬ [RD] + [ADDR]

Add memory contents to register, using direct addressing.

[RD] ¬ [RD] + [[RM]]

Add memory cntents to register, using implied addressing.

[RD] ¬ [RD] - [ADDR]

Subtract memory contents from register, using direct addressing.

[RD] ¬ [RD] - [[RM]]

Subtract memory contents from register, using implied addressing.

[RS] - [ADDR]

Compare memory contents with registers, using direct addressing. Only the

status flags are affected.

[RS] - [[RM]]

Compare memory contents with registers, using implied addressing. Only the

status flags are affected.

[RD] ¬ [RD] L [ADDR]

AND memory contents with thoes of register, using direct addressing.

[RD] ¬ [RD] L [[RM]]

AND memory contents with thoes of register, using implied addressing.

[RD] ¬ [RD] V [ADDR]

Exclusive-OR memory contents with thoes of register, using direct addressing.

[RD] ¬ [RD] V [[RM]]

Exclusive-OR memory contents with thoes of register, using implied addressing.

STATUSES

S Z C O

X X X X

X X X X

X X X X

X X X X

X X X X

X X X X

X X

X X

X X

X X

TYPE

P
R

IM
A

R
Y

 I
/O

A
N

D
 M

E
M

O
R

Y
R

E
F

R
E

N
C

E
S

E
C

O
N

D
A

R
Y

 I
/O

 A
N

D
 M

E
M

O
R

Y
 R

E
F

E
R

E
N

C
E

Table 2-2. CP1600 Instruct Set Summary

MNEMONIC

MVII

MVOI

ADDI

SUBI

CMPI

ANDI

XORI

J

JR

JSR

B

Bcond

BEXT

OPERAND(S)

DATA, RD

RS, DATA

DATA, RD

DATA, RD

DATA, RS

DATA, RD

DATA, RD

LABEL

RS

RB,LABEL

DISP

DISP

DISP, E

WORDS

2

2

2

2

2

2

2

3

1

3

2

2

2

OPERATION PERFORMED

[RD] ¬ DATA

Load immediate to specified register.

[[R7]+1] ¬ RS

Store contents of specified register in immediate field of MVOI instruction.

The is only possible if program is read/write memory (rather that ROM).

[RD] ¬ [RD] + DATA

Add immediate to specified register.

[RD] ¬ [RD] - DATA

Subtract immediate data from specified register.

[RD] - DATA

Compare immediate data with contents of spcified register.Only the status flags are affected.

[RD] ¬ [RD] L DATA

AND immediate data with contents of specified register.

[RD] ¬ [RD] V DATA

Exclusive-OR immediate data with contents of specified register.

[R7] ¬ LABEL

Jump to given address.

[R7] ¬ [RS]

Jump to address contained is specified register.

[RB] ¬ [R7], [R7] ¬ LABEL

Jump to given address, saving Program Counter in R4, R5, or R6.

[R7] ¬ [R7] + 2 ± DISP

Branch relative to Program Counter contents.

If cond is true, [R7] ¬ [R7] + 2 ± DISP

Branch relative on given condition; otherwise, execute next sequential instruction.

EBCA0-3 ¬ E;

If EBCI = 1, [R7] ¬ [R7] + 2 ± DISP

Branch relative if external condition is true.

STATUSES

S Z C O

X X X X

X X X X

X X X X

X X

X X

X X

TYPE

IM
M

E
D

IA
T

E
IM

M
E

D
IA

T
E

 O
P

E
R

AT
E

JU
M

P
B

R
A

N
C

H
 O

N

C
O

N
D

IT
IO

N

Table 2-2. CP1600 Instruct Set Summary (Continued)

MNEMONIC

MOVR

ADDR

SUBR

CMPR

ANDR

XORR

CLRR

TSTR

INCR

DECR

COMR

NEGR

ADCR

SLL

OPERAND(S)

RS, RD

RS, RD

RS, RD

RS, RD

RS, RD

RS, RD

RD

RS

RD

RD

RD

RD

RD

RR(,2)

WORDS

1

1

1

1

1

1

1

1

1

1

1

1

1

1

OPERATION PERFORMED

[RD] ¬ [RS]

Move contents of source register to destination register.

[RD] ¬ [RS] + [RD]

Add contents of specified registers.

[RD] ¬ [RD] - [RS]

Subract registers of source register from thoes of destination register.

[RD] - [RS]

Compare registers’ contents. Only the status flags are affected.

[RD] ¬ [RD] L [RS]

AND contents of specified registers

[RD] ¬ [RD] V [RS]

Exclusive-OR contents of specified registers.

[RD] ¬ [RD] V [RD]

Clear specified register.

[RD] ¬ [RS]

Test contents of specified register.

[RD] ¬ [RD] + 1

Increments contents of specified register.

[RD] ¬ [RD] - 1

Decrements contents of specified register.

[RD] ¬ [R
—

D
—

]

Complements contents of specified register (ones complement).

[RD] ¬ 0016 - [RD]

Negates contents of specified register (twos complement).

[RD] ¬ [RD] + [C]

Add Carry bit to specified register contents.

[RR]

Shift logical left one or two bits, clearing bit 0 (and bit 1 is shifting twice).

STATUSES

S Z C O

X X

X X X X

X X X X

X X X X

X X

X X

0 1

X X

X X

X X

X X

X X X X

X X X X

X X

TYPE

R
E

G
IS

T
E

R
-R

E
G

IS
T

E
R

M
O

V
E

 A
N

D
 O

P
E

R
AT

E
R

E
G

IS
T

E
R

 O
P

E
R

AT
E

Table 2-2. CP1600 Instruct Set Summary (Continued)

15 0 0

OPERATION PERFORMED

[RR]

Rotate left one bit through Carry, or rotate 2 bits left through Overflow and Carry.

[RR]

Shift logical left one bit into Carry, clearing bit 0, or shift left two bits into

Overflow and Carry, clearing bits 0 and 1.

[RR]

Shift logical right one or two bits, clearing bit 15 (and bit 14 if shifting twice).

[RR]

Shift arithmetic right one or two bits, copying high order bit.

[RR]

Rotate right one bit through Carry, or rotate two bits right through Overflow and Carry.

[RR]

Shift arithmetic right one bit into Carry, or two bits into Overflow and Carry.

[RR]

Swap bytes of register once, or twice.

MNEMONIC

RLC

SLLC

SLR

SAR

RRC

SARC

SWAP

OPERAND(S)

RR(,2)

RR(,2)

RR(,2)

RR(,2)

RR(,2)

RR(,2)

RR(,2)

WORDS

1

1

1

1

1

1

1

STATUSES

S Z C O

X X X 2

X X X 2

X X

X X

X X X 2

X X X 2

X X

TYPE

R
E

G
IS

T
E

R
 O

P
E

R
AT

E
 (

C
O

N
T

IN
U

E
D

)

Table 2-2. CP1600 Instruct Set Summary (Continued)

15 0OC

15 0O

O

C

C

15 0OC 0

15 0

15 0

0

15 0

7 015 8

MNEMONIC

PSHR

PULR

SIN

EIS

DIS

TCI

JE

JD

JSRE

JSRD

GSWD

RSWD

CLRC

SETC

NOPP

NOP

HLT

SDBD

OPERAND(S)

RS

RD

(2)

LABEL

LABEL

RB, LABEL

RB, LABEL

RD

RS

(2)

WORDS

1

1

1

1

1

1

3

3

3

3

1

1

1

1

2

1

1

1

OPERATION PERFORMED

Separate mnemonics for MVO@ RS,R6

Seperate mnemonics for MVI@ R6,RD

PCIT ¬

Softwate interrupt

Enable interrupt system.

Disable interupt system.

Terminate current interrupt.

Jump to given address and enble interrupt system.

Jump to give address and disable interrupt system.

Jump to given address, saving Program Counter in R4, R5, or R6, and enable interrupt system.

Jump to given address, saving Program Counter in R4, R5, or R6, and disable interrupt system.

[RD <15,12>] ¬ [SW];[RD<7,4>] ¬ [SW]

Place Status Word in upper half of each byte of the specified register. RD

may be R0, R1, R2, or R3.

[SW] ¬ [RS<7,4>]

Load Status Word from bits 7 through 4 of the specified register.

[C] ¬ 0

Clear Carry.

[C] ¬ 1

Set Carry.

No Operation

Halt after executing next instruction.

Set double byt data mode for next instruction, which mush be one of the following types:
Primary or secondary I/O or memory reference
Immediate or immediate operate

If implied addressing throught R1, R2, or R3 is used, the same byte will be
accessed twice; addressing through R4, R5, or R7 will give bytes from the
addressed location and that addressed after auto-increment. Direct address-
ing and Stack addressing are not allowed in double byte mode.

STATUSES

S Z C O

X X X X

0

1

TYPE

S
TA

C
K

IN
T

E
R

R
U

P
T

S
TA

T
U

S

Table 2-2. CP1600 Instruct Set Summary (Continued)

Table 2-3. CP1600 Branch Conditions and Corresponding Codes

The following notation is used in Table 2-4:

Where ten digits are shown, they are the ten low-order bits of a 10 to 16-bit word (Word size depends on the
system impiementation.) Where four digits are shown, they represent the hexadecimal notation for an entire
word (10 to 16 bits).

bb Two bits indicating one of the first three general purpose registers:
00 = R0
01 = R1
10 = R2

cccc Four bits giving branch condition, as shown in Table 2-3.
ddd Three bits indicating a destination register, RD:

000 = R0
001 = R1
010 = R2
011 = R3
100 = R4
101 = R5
110 = R6
111 = R7

eeee Four bits giving the external branch condition, E. Control signals EBCA0-EBCA3 reflect the state of
these four bits.

llll One word of immediate data (10 or 16 bits)

OBJECT CODE
MNEMONIC BRANCH CONDITION DESIGNATION

C C = 1 0001
LGT Carry

(Logical greater than)
NC C = 0 1001
LLT No Carry

(Logical less than)
OV O = 1 0010

Overflow
NOV O = 0 1010

No Overflow
PL S = 0 0011

Plus
MI S = 1 1011

Minus
ZE Z = 1 0100
EQ Zero (equal)

NZE Z = 0 1100
NEQ Nonzero (not equal)
LT S V O = 1 0101

Less than
GE S V O = 0 1101

Greater than or equal
LE Z V (S V O) = 1 0110

Less that or equal
GT Z V (S V O) = 0 1110

Greater than
USC C V S = 1 0111

Unequal sign and carry
ESC C V S = 0 1111

Equal sign and carry

mmmm Three bits indicating a Data Counter Registed RM:
000 = R0
001 = R1
010 = R2
011 = R3
100 = R4
101 = R5
110 = R6
111 = R7

m One bit indicating the number of rotates or shifts
0 one bit positions
1 two bit positions

p One bit of immediate address
P One hexadecimal digit (4 bits) of immediate address
rr Two bits indicating one of the first four general purpose registers.

00 = R0
01 = R1
10 = R2
11 = R3

sss Three bits indication a source register, RD:
000 = R0
001 = R1
010 = R2
011 = R3
100 = R4
101 = R5
110 = R6
111 = R7

z Sign of the displacement
0 add the displacement to PC countents
1 subtract the displacement from PC contents

In the “Machine Cycles” collumn, when two numbers are given with one slash between them (e.g., 7/9), exe-
cution time depends on whether or not a branch is taken. When two numbers are given, separated by two
slashed (such as 8//11), execution time depends on which register contains the implied address.

THE BENCH MARK PR OGRAM

For the CP1600 our benc hmark pr ogram ma y be illustrated as f ollo ws:

MVII IOBUF,R4 LOAD THE I/O BUFFER STARTING ADDRESS INTO R4
MVII TABLE,R1 LOAD THE TABLE STARTING ADDRESS INTO R1
MVI@ R1,R5 LOAD ADDRESS OF FIRST FREE TABLE WORD INTO R5
MVII CNT,R2 LOAD WORD COUNT INTO R2

LOOP MVI@ R4,R0 LOAD NEXT DATA WORD FROM IOBUF
MVO@ R0,R5 STORE IN NEXT TABLE WORD
DECR R2 DECREMENT WORD COUNT
BNZE LOOP RETURN IF NOT END
MVO@ R5,R1 RETURN ADDRESS OF NEXT FREE TABLE BYTE

This benchmark program makes very few assumptions. The input table IOBUF and the data table TABLE can
have any length, and can reside anywhere in memory. The address of the first word in TABLE is stored in the
first word of the TABLE.

Table 2-4. CP1600 Instruction Set Object Codes

OBJECT MACHINE
INSTRUCTION CODE WORDS CYCLES

ADCR RD 0000101ddd 1 6

ADD ADDR,RD 1011000ddd 2 10
PPPP

ADD@ RM,RD 1011mmmddd 1 8//11

ADDI DATA,RD 1011111ddd 2 8
llll

ADDR RS,RD 0011sssddd 1 6

AND ADDR,RD 1110000ddd 2 10
PPPP

AND@ RM,RD 1110mmmddd 1 8/11

ANDI DATA,RD 1110111ddd 2 8
llll

ANDR RS,RD 0110ssddd 1 6

B DISP 1000z00000 2 7/9
PPPP

Bcond DISP 1000z0cccc 2 7/9
PPPP

BEXT DISP,E 1000z1eeee 2 7/9
PPPP

CLRC 0006 1 4

CLRR RD 0111dddddd 1 6

CMP ADDR,RS 1101000sss 2 10
PPPP

CMP@ RM,RS 1101mmmsss 1 8//11

CMPI DATA,RS 110111sss 2 8
llll

CMPR RS,RD 0101sssddd 1 6

COMR RD 0000011ddd 1 6

DECR 0000010ddd 1 6

DIS 0003 1 4

EIS 0002 1 4

GSWD RR 00001100rr 1 6

HLT 0000 1 4

INCR 0000001ddd 1 5

J LABEL 0004 3 12
11pppppp00

PPPP

JD LABEL 0004 3 12
11pppppp10

PPPP

JE LABEL 0004 3 12
11pppppp01

PPPP

JR RS 0010sss111 1 7

JSR RB,LABEL 0004 3 12
bbpppppp00

PPPP

JSRD RB,LABEL 0004 3 12
bbpppppp10

PPPP

OBJECT MACHINE
INSTRUCTION CODE WORDS CYCLES

JSRE RB,LABEL 0000 3 12
bbpppppp01

PPPP

MOVR RS,RD 0010sssddd 1 5//7

MVI ADDR,RD 1010000ddd 2 10
PPPP

MVI@ RM,RD 1010mmmddd 1 8//11

MVII DATA,RD 101011ddd 2 5
llll

MVO RS,ADDR 1001000sss 2 11
PPPP

MVO@ RS,RM 1001mmmsss 1 9

MVOI RS,DATA 1001111ssss 2 9
llll

NEGR RD 0000100ddd 1 6

NOP (2) 000011010m 1 5

NOPP 1000z01000 2 7
PPPP

PSHR RS 1001110sss 1 9

PULR RD 1010110ddd 1 11

RLC RR(,2) 0001010mrr 1 6/8

RRC RR(,2) 0001110mrr 1 6/8

RSWD RS 0000111sss 1 6

SAR RR(,2) 0001101mrr 1 6/8

SARC RR(,2) 0001111mrr 1 6/8

SDBD 0001 1 4

SETC 0007 1 4

SIN (2) 000011011m 1 6

SLL RR(,2) 0001001mrr 1 6/8

SLLC RR(,2) 0001011mrr 1 6/8

SLR (RR,2) 0001100mrr 1 6/8

SUB ADDR,RD 1100000ddd 2 10
PPPP

SUB@ RM,RD 1100mmmddd 1 8//11

SUBT DATA,RD 1100111ddd 2 8
llll

SUBR RS,RD 0100sssddd 1 6

SWAP RR(,2) 0001000mrr 1 6/8

TCI 0005 1 4

TSTR RS 0010ssssss 1 6//7

XOR ADDR,RD 1111000ddd 2 10
PPPP

XOR@ RM,RD 111mmmddd 1 8//11

XORI DATA,RD 1111111ddd 2 8
llll

XORR RS,RD 0111sssddd 1 6

Figure 2-11, CP1600 to 8080A Bus Conversion

CP1600
System Bus

Signals

MUX

1 of 8 Decoder

BAR

BC1

BC2

BDIR

INTR

INTRM

BUSRQ

BUSAK

BDRDY

MSYNC

STSTP

HALT

TCI

EBCA0

EBCA3

EBCI

DTB

DWS

IAB

INTAK

ADAR

DN

NACT

Latched
Address
Buffer

Latched
Data
Buffer

A0

High-order
byte

Low-order
byte

A15

D0
D7
D0
D7

D0

D15

8080A
System Bus

Signals

RESET

WAIT

RDYIN

HOLD

BUSEN

INT

INT

INTA

MEMW

MEMR

SUPPORT DEVICES THAT MAY BE USED WITH THE CP1600

A CP1600 microcomputer system with any significant capabilities will use support of some other microproces-
sor. Parallel l/O capability is available with the CP1680, (described next), but priorty interrupt logic, DMA logic,
and serial I/O logic, to mention just a few common options, may need additional support devices. Fortunately,
it is quite easy to g enerate an 8080A-compatib le system b us fr om the CP1600 system b us. Logic is
illustrated in Figure 2-11.

The CP1600A is the fastest version of the CP1600 CPU: it runs with a 500 nanosecond machine cycle. The
CP1600 machine cycle is equivalent to an 8080A clock period Since the standard 8080A clock period is also
500 nanoseconds, no speed conflicts will arise.

The bus-to-bus interface logic illustrated in Figure 2-1 is self-evident, with the exception of bus demultiplexing
logic. The CP1600 Data/Address bus is shown buffered by a demultiplexing buffer that is conected to two
latched buffers. One of the latched buffers accepts the demuItiplexer outputs only when a valid address is
being output, as identified by BAR high. The second latched buffer may be a bidirectional latched buffer, or it
may be two unidirectional latched buffers. Three latching strobes are required: DTB, IAB, and DWS.

DTB and IAB are data input strobes. DTB strobes data input that is to be interpreted as data, while IAB
stroves data input that is to be interpreted as an address. So far as external logic is concerned, both of these
signals are simple data input strobes. We could therefore generate a single data input strobe as the OR of
DTB and IAB When this data input strobe is high, information on the 8080A System Bus side of the latched
data buffer must be input to the buffer; this data must simultaneously be transmitted to the multiplexer.

DWS is the data output strobe. When high, this signal must strobe data from the multiplexer to the latched
data buffer; this latched data must immediately appear at the 8080A System Bus side of the latched data
buffer.

Since the CP1600 uses a 16-bit Data Bus, you will probably have to generate two external device data
busses: a hich-order byte bus and a low-order byte bus. All external devices that transmit or receive parallel
data must be present in duplicate. For example, were 8255 parallel interface devices to be present, the follow-
ing connections would be required:

Device
Select
Logic

8255
PPI

8255
PPI

WR

RD

D0

D7
D8

D15

A0
A1
A2

A15

PA low
WR

RD

A0

A1

CE

WR

RD

A0

A1

CE

D7D0D0 D7

PB low

PC low

PA high

PB high

PC high

Osbourne/Mcgraw Hill is the copyright holder of this document.
Please email any corrections to tlindner@ix.netcom.com

